Умные вопросы
Войти
Регистрация
Срочно помогите пожалуйста Как исследовать на сходимость ряд summ (2^n/n^3) , n=1
9 года
назад
от
Sergei Potapov
1 ответ
▲
▼
0
голосов
т. к. у нас имется показательный член 2^n, то применяем признак сходимости Даламбера. a (n) =2^n/n^3. находим предел lim (n/a (n) , при n стремящемся к бесконечности. lima (n/a (n) =lim2^n^3/ (n^3-2^n=lim2*n^3/ (n^3+3n^2+3n=lim2/ (1+3/n+3/n^2/n^3) . при n стремящемся к бесконечности этот предел равен 20, следовательно ряд расходящийся.
9 года
назад
от
pirlex
Связанные вопросы
2
ответов
Что я мог сделать не так при сборке лаб. Бп.
6 года
назад
от
Сергей Сергачев
4
ответов
И вот вы встретились с инопланетянином. Какой бы вопрос вы ему задали? Или что сказали?
2 года
назад
от
Askar
3
ответов
Правда, что Титаник мог при условии остаться на плаву и при боковом столкновении?
7 года
назад
от
Игорь