докажите что: если x, y произвольные натуральные числа то xy (x+y) и xy (x-y) четные числа

12 года назад от Viktor Kukjan

2 Ответы



0 голосов
Очевидно, что если либо x, либо y четные, то xy тоже будет четным.
 
Если же и x, и y - нечетные, то их можно представить в виде: x=2a, y=2b.
Тогда x+y = 2a+2b = 2 (a+b - четное, x-y = 2a-2b-1 = 2 (a-b) - тоже четное.
 
Сответственно, произведение четного числа на любое натуральное будет тоже четным.
12 года назад от Настя Антонова
0 голосов
подумай сама. перебери варианты - если х четное, а y нечетное, если х нечетное, а y четное итд - всего-то 4 варианта.
12 года назад от Dj Aid

Связанные вопросы

2 ответов
10 месяцев назад от my pes