В чем суть собственного вектора матрицы

Не, определение я знаю.
А в чем его суть или значимость?
Ну получается после перемножения он же сам с собственным числом - и что?
Чем это свойство полезно или ценно?
В чем его физический, математический или геометрические смысл?
Почему он так важен?
4 года назад от EstelaZ96304

2 Ответы



0 голосов
ну, матрица - это что?
это линейный оператор.
т. е, всякие там сжатия-растяжения, повороты-отражения пространства.
так вот, при этих коверканьях некоторые прямые или плоскости остаются на месте, т. е. переходят в себя, может, только растягиваются чуть-чуть.
вот эти векторы как раз эти инвариантные подпространства и задают.
4 года назад от катя метелина
0 голосов
Это важно тем, что, во-первых, собственные векторы и собственные значения являются инвариантами, не зависят от кординат. Во-вторых, (в ряде случаев) произвольный вектор можно разложить на собственные, и матричные операции заменить обычными алгебраическими.
А уж если матрица эрмитова, то е собственные векторы вобще образуют ортогональный базис.
Физический смысл в том, что для матрицы (оператора) наблюдаемой е собственные векторы это собственные квантовые состояния, а собственные значения являются теми значениями, которые могут быть получены при наблюдении квантовой системы.
4 года назад от Лизуля Соболева

Связанные вопросы