Если бы Евклид уточнил, что между параллельными прямыми расстояние постоянно, то могли бы прямые пересекаться?

7 года назад от danchik

4 Ответы



0 голосов
А параллельные прямые на самом деле пересекаются . В бесконечности . Даже если бы Евклид уточнил, что между параллельными прямыми расстояние постоянно. Поэтому в учебниках дают несколько неточную (не полную я бы сказал ) формулировку "параллельных прямых"
7 года назад от Андрей Смирнов
0 голосов
Да, в 3-ем измерении - геометрия Римана-Лобачевского. Нарисуйте параллельные прямые на листе бумаги, а потом скрутите его - в 3-ем измерении будет пересечение.
7 года назад от tmn gll
0 голосов
1. Понятие "расстояние между прямыми" некоректно.

 2. Само понятие "параллельные прямые" означает, что они не пересекаются.
 
3. Другие теории геометрии говорят лишь:
- параллельных прямых не существует (Риман, например) ,
- параллельных прямых бесконечное множество через данную точку (Лобачевский, например) .
7 года назад от TanyaLaby33
0 голосов
Если прямые параллельны, то они не могут пересекаться по определению. Если прямые пересеклись значит они не параллельны. Всё просто!
Не надо прикладную математику и чистую математику. В прикладной математике параллельных прямых нет.
7 года назад от Роман Надыршин

Связанные вопросы

2 ответов
1 ответ