Умные вопросы
Войти
Регистрация
Как доказать что при любых значениях n3-n нацело делится на 6
7 года
назад
от
Джордано Бруно
1 ответ
▲
▼
0
голосов
n^3-n = n* (n^2-1) = n* (n-1) * (n = (n-1) *n* (n
Число делится на 6 если оно делится на 2 и на 3.
Итак, при делении n на 2 можем получить остаток или 0 (если делится) или 1 (если не делится) .
Если (n mod 2) = 1, то (n-1) mod 2) = 0 - доказывает что указанное выражение обязательно делится на 2
При делении n на 3 возможны остатки 0, 1 или 2. Рассмотрим те случаи, когда n не делится на 3 (когда остаток отличен от нуля) :
1. n mod 3 = 1, из этого как и в первом случае следует
(n-1) mod 3 = 0
2. n mod 3 = 2, из этого следует что
(n mod 3 = 0
Таким образом мы видим что при любых n какой-то из множителей обязательно делится на 2 и какой-то на 3, а значит всё выражение делится на 6.
ДОКАЗАНО.
7 года
назад
от
Николай Илларионов
Связанные вопросы
1
ответ
Какой из этих тиглей купить чтоб плавить медь латунь сталь кварц чтоб хороший и не испортился быстро?
4 года
назад
от
Артём Чудинович
2
ответов
Формула Гравитации. Объясните
4 года
назад
от
ChadwickAnno
1
ответ
Почему сейчас лидеры и генералы не воюют вместе со своей армией? Поле-то помасшабне карт. А на кресло президента +
2 года
назад
от
SherylWoodwo