Умные вопросы
Войти
Регистрация
Вещественные числа расположены на прямой, комплексные на плоскости, тогда какие числа являются точками пространства?
8 года
назад
от
Kondar
4 Ответы
▲
▼
0
голосов
Вобще-то любая тройка вещественных чисел является кординатами точки в трехмерном пространстве, так же как любая пара - точки на плоскости. Но если говорить о том, чтобы эти числа позволяли удобные геометрические преобразования, то кватернионы. Они имеют три различных мнимых составляющих, с их помощью очень удобно расчитывать повороты и перемещения в трехмерном пространстве и они для этого часто применяются. В частности, "на основе алгебры кватернионов был создан трёхмерный векторный анализ (Гиббс, Хевисайд) . ". Вобще векторы - дети кватернионов. "Первым векторы ввёл У. Гамильтон в связи с открытием в 1843 г. кватернионов (как их трёхмерную мнимую часть) . " (Википедия) P. S. "Памятная табличка на мосту Брум Бридж в Дублине: «Здесь на прогулке, 16 октября 1843 года, во вспышке гения, сэр Уильям Роуэн Гамильтон открыл формулу перемножения кватернионов» "
8 года
назад
от
CharlotteKon
▲
▼
0
голосов
Неправильная постановка. Точки плоскости могут быть и вещественными числами, так как их "столько же", сколько точек прямой. И в трехмерном пространстве их столько же.
Просто плоскость - хорошая геометрическая модель поля комплексных чисел, нечаянное совпадение. А 3-мерное пространство ничья не модель.
8 года
назад
от
sa sa
▲
▼
0
голосов
Простейший пример трехмерной алгебры над полем действительных чисел - трехмерное векторное пространство с векторным произведением (это трехмерная алгебра Ли относительно операции векторного произведения) .
Кто-то даже рискует называть конечномерные алгебры над полем R "гиперкомплексными числами".
Но вот попробуй решить очень простенькое уравнение a*x=b в общем случае (где a, b, x - векторы, * - векторное произведение) . Если у тебя a и b не перпендикулярны, то корней у него не будет. А если перпендикулярны и не равны нулю, то будет бесконечно много.
Не стоит всё подряд "числами" называть.
8 года
назад
от
Алексей Розвезев
▲
▼
0
голосов
Да какие хочешь, главное чтобы они не существовали на других двух осях. По сути вторую ось (и, как следствие, плоскость) сформировали именно потому, что мнимые числа не могут располагаться на вещественной оси, поэтому их расположили на перпендикулярной оси, потому как оси пересекаются только в нулевой точке, это просто необходимость для их представления. Можешь придумать хоть сотню разных осей и напихать их в многомерное пространство.
8 года
назад
от
vajkule08
Связанные вопросы
1
ответ
Как думаете, реально ли разработать приложение с симуляцией планеты Земля, при подключении мозга к компьютеру чтобы.
1 год
назад
от
erix
1
ответ
Сдаю завтра общий школьный анализ (моча, кровь) , содержание наркотиков в организме могут найти?
8 года
назад
от
Тот самый спирт)
2
ответов
Как подключить колонки к проигрывателю Hitachi TRK- W555VV?
3 года
назад
от
zomby snayper