Математика. Все что касаемо геометрических фигур - поиска величин, боковых и полных поверхностей, не вызывает особых

Проблем. Однако, всё что касается тригонометрии - графиков, функций, фаз. вот тут очень сложно.
 Вопрос: чем это объяснить, общем низким уровнем интеллекта, складом определенного мышления или отсутствием навыка?
1 год назад от desham2012

3 Ответы



0 голосов
Если разговор о школьной математике, то она доступна практически всем людям со средними способностями. Просто одним нужно пять примеров, чтобы хорошо усвоить материал, другим - двадцать пять, а кому-то - сто. Только решать эти примеры нужно не тупо подставля цифры в формулы или переставля символы, а вникая в суть.
1 год назад от 5g er
0 голосов
Просто плохо объясняли или по каким-то причинам отсутствовал на занятии. Зачастую учителя предпочитают просто пробежать по верхам, не следя за тем, как его поняли ученики. на самом деле там все просто как лом.
В школьной математики три больные вещи для меня были: тригонометрия, производные и логарифмы. В универе были другие преподаватели и мои проблемы быстро устранились. Сколько лет прошло, но вбили в голову. Если сейчас немного повторить обучение, то все вспомню, и дифуры, и ряды всякие
1 год назад от Kathi29R408
0 голосов
Сложности, с которыми вы сталкиваетесь в области тригонометрии, могут быть объяснены несколькими факторами. Во-первых, тригонометрия является относительно абстрактной областью математики, которая требует некоторой абстрактной и логической мысли. Это может быть вызвано разными факторами, такими как ваш уровень опыта в изучении математики или вашей привычкой к решению задач конкретного типа.
 
Во-вторых, понимание графиков, функций и фаз требует некоторого интуитивного понимания и визуализации математических концепций. Некоторым людям может быть сложно представить себе абстрактные математические идеи визуально или применить их на практике. Это может быть связано с разными стилями мышления и индивидуальными предпочтениями при обучении.
 
Наконец, навык играет важную роль в понимании и применении тригонометрии. Если вы не имели достаточной практики или не освоили основные принципы и формулы, то это может привести к трудностям при работе с тригонометрией.
 
В целом, сложности в понимании тригонометрии могут быть вызваны комбинацией различных факторов, включая уровень интеллекта, стиль мышления и уровень навыка в математике. Важно помнить, что с усилиями, практикой и использованием различных методов обучения можно преодолеть эти трудности и улучшить свое понимание тригонометрии.
1 год назад от RubinLevy170

Связанные вопросы

1 ответ
1 ответ
7 года назад от Дмитрий Сушков