Боле точная характеристика тока не q/t , a q*n*v*S ?

Судите сами.
Вобще мгновенная сила тока - это производная заряда. (Точно так же как как в механике мгновенная скорость-это производная пути)
Но вот производная заряда (сила тока в данный момент времени) это же предел к которому стремится дробь дельта q / дельта t при стремлении промежутка времени к нулю. Поэтому эта дробь приближённо равна мгновенной силе тока. Но лишь приближённо. Ведь до предела (производной) значение этой дроби доходит лишь приближённо? И следовательно dq/dt тоже только приближённо равно силе тока в данный момент времени. Ведь сила тока через момент времени dt будет хоть мизерно, но отличаться. Мгновенная сила тока точно равна поизводной от заряда, но приближённо равна dq/dt
Выходит, что Формула dq/dt выполняется точно только для постоянного тока? Для расчёта мгновенного тока при переменном токе боле точна формула I=envS cos wt?
 
РАЗЪЯСНИТЕ!
 
Заране СПАСИБО!
11 года назад от алексей Суров

2 Ответы



0 голосов
Всё очень точно. Любая производная абсолютно точна в пределах гипотезы сплошности. Например, молекулы в трубопроводе заменяются бесконечно-малым объёмом жидкости с линейными характеристиками и "гладким" взаимодействием с соседями, так же в механике сплошных сред, так же в волновой механике, так же в термодинамике, и в электродинамике так же. Поправок внести не получится - попытки дальнейшего уточнения заведомо обречены на бессмысленность, поскольку отклонение опытных данных от теории с производной носит чисто стохастический характер (Бобр привёл хороший пример) . Это не нужно ещё и потому, что производные сами по себе дают погрешность, на многие порядки меньшую чем инженерная, и никаких фундаментальных откровений в себе не несут.
 
Если речь идёт о каких-то макроскопических погрешностях, вроде влияния всяческих дислокаций и микротрещин при сопротивлении материалов, то вопрос решается коэффициентом, при этом дифференциальный характер каких-то законов, конечно же, сохраняется. В электродинамике смысла в этих коэффициентах нету, тех же электронов СЛИШКОМ много чтобы они давали сколько-то ощутимые флуктуации.
 
>>Через бесконечно малый промежуток времени сили тока хоть бесконечно, но будет отличаться .
- Конечно. Так смысл производной в том, что через бесконечно-малый промежуток времени изменение любой гладкой функции такое же, как изменение касательной к ней в этой точке. В действительности, при устремлении дельты к нулю, график в пределах этой дельты сливается с графиком касательной к нему - в этом и весь смысл. В мат. анализе доказывается, что изменение функции в пределах дельты имет меньший порядок малости, чем разница между изменением функции и касательной. При устремлении к нулю величины, имеющие бОльший порядок малости, пропадают. Почему так - рассматривается в теории пределов. Возможно, математики поправят мой не слишком математичный говор
11 года назад от РОМАН ТИШАКОВ
0 голосов
В этом просто нет смысла: "точного" значения силы тока просто не существует в природе: ведь, в конечном итоге, ток сводится к движению заряженных частиц, а они дискретны . )
В одну фемтосекунду через срез проводника прошло 3 электрона, а в другую - 5. И какой там был ток? ;)
 
На самом деле, всё намного проще: используются приближения. При этом важно использовать их правильно и не забывать о том, что это только приближения: либо мы можем считать, что сила тока изменяется боле-мене гладко, либо мы поштучно считаем пролетевшие электроны и понятие силы тока вобще не используем.
11 года назад от Оксана Маргитич

Связанные вопросы

1 ответ
2 месяцев назад от Ваня Шульганов
1 ответ
8 года назад от Viktor Orlov
2 ответов
7 месяцев назад от Roksolanna